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Abstract. We propose a method to build a fully connected knowledge
graph in the scientific domains of heliophysics and astrophysics, using
word embeddings from BERT which are adaptively fine-tuned to these
domains. We extract the scientific concepts automatically by a keyword AQ1

extractor. The graph nodes representing these concepts are connected
and weighed based on the cosine similarities computed from their fine-
tuned embeddings. Our method is able to capture various meaningful
scientific connections, and it incorporates the possibility to enable knowl-
edge discovery.

Keywords: Knowledge graph · Knowledge discovery · Language
models

1 Introduction

As we carry out our daily scientific work within our own expertise, the ever
expanding knowledge web inevitably becomes unstructured in a way that it can
be disconnected among concepts, let alone if there is a meaningful relation hidden
between different domains. Within and across domains, the same scientific term
can mean differently to the respective communities, for instance the term radia-
tion: it could be related to X-ray observation for astronomers, or UV radiation
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effect to the skin for biologists. On the other hand, cross-disciplinary researches
have become increasingly important, as scientific discoveries in modern days
usually benefit from huge collaborative efforts.

Therefore, structuring the knowledge base can encourage more dialogues and
make possible new discoveries across the domains. Most of all, it will save the
researchers’ time in sorting out the ingredients they need for their research, and
efforts can be well invested into the thought processes, experiments and etc.,
shedding lights on numerous questions or mitigations from how does the Sun
affect lives on earth, to what is the origin of the Universe, and so on.

In science, to accept or rule out a concept or theory it requires sufficient
experiments, observations and etc., which take time. With this in mind, how
could we build a knowledge graph (KG) that incorporates probable or even
accelerates new discoveries as well? In this regard, we turn into the investigation
of how strongly or distantly connected are the given concepts.

On the other hand, from the perspective of data, the challenge adds up as we
do not have a labeled dataset to train on for a Named Entity Recognition (NER)
task, nor a ground truth to validate against. Apart from that, we also do not
have an ontology which is typically used as a foundation to build a knowledge
graph. Therefore, to extract the relevant entities, we will be using an automatic
keyword extractor, and we rely on human experts in our team for validation.
A naive strategy for us would be to start from constructing a smaller-sized
knowledge graph that can be well verified in the process.

In our approach, we mine the texts using a controlled set of terms. We will
specify these controlled terms in our experiments. The extracted keywords from
the texts are taken to be related, and are examined in more detail where they
are found to carry higher cosine similarities of at least 0.5. As a result, we
will present specifically several pairs of the scientific terms or concepts that
we obtained to illuminate what our embedding-based method using the fine-
tuned language models can accomplish. In particular, we work on the domains
of heliophysics and astrophysics, as we have the related knowledge expertise, and
these 2 domains are known to be closely connected.

Our contributions from the present work are:

• We created 4 fine-tuned language models in heliophysics and in astrophysics:
helioBERT, hierarchical helio-astroBERT, large helioBERT, and large hier-
archical helio-astroBERT.

• We propose a novel method to build a knowledge graph based on cosine
similarities for heliophysics and astrophysics domains.

2 Related Work

Some recent techniques such as logical reasoning and post-processing operations
have been applied as refinement methods for knowledge graphs (e.g. automatic
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Building Knowledge Graphs in Heliophysics and Astrophysics 3

completion and error detection) [1]. Reasoning can deal with automatically deriv-
ing proofs for theorems, and for uncovering contradictions in a set of axioms. It
is widely adopted in the Semantic Web community, leading to the development
of a larger number of ontology reasoners. For example, if a person is defined to be
the capital of a state, this is a contradiction, since cities and persons are disjoint,
i.e., no entity can be a city and a person at the same time. Some approaches for
knowledge graph building have implemented reasoning when new axioms are to
be added (NELL dataset, PROSPERA).

To validate a KG, a naive but popular approach is to randomly sample triples
from the KG to annotate manually. A triple is considered correct if the corre-
sponding relationship is consistent with the domain expertise [2], hence the KG
accuracy can be defined as the percentage of triples in the KG being correct
– a sampling approach. While in terms of the quality of the extracted entities
themselves, the most common approach is again human evaluation [3]. In gen-
eral, the target entities can be extracted by a (fine-tuned) NER model through
e.g. flairNLP1. Also, the flairNLP text embedding library comes with its word
embeddings Flair, and options such as GloVe [4] and BERT [5], or a combina-
tion of different embeddings can be chosen. On the other hand, one can consider
some structure graph metrics such as the Structure Hamming Distance metric
[6], which can be applied to compare the built KG with a known ontology as a
reference graph.

There has been an increased interest in generating knowledge graphs for helio-
physics and astrophysics domains, such as the NASA Heliophysics KNOWledge
Network project [7] and other initiatives [8,9]. We draw our inspiration from a
recent approach that proposes a language model for astronomy and astrophysics
known as astroBERT [10]. The language model astroBERT is found to outper-
form BERT on NER task on the data of astronomical content. Similarly, another
BERT variant, SciBERT [11] which was proposed earlier, has been fine-tuned
on scientific texts with 18% from computer science and 82% from biomedical
domains.

3 Methodology

Our methodology consists of two main components. It begins with data collec-
tion, followed by a knowledge graph construction which requires a fine-tuning
procedure of the language model BERT. We propose the following machine learn-
ing pipeline (Fig. 1):

First, to enrich our primary dataset from NASA’s Science Mission Directorate
(SMD), we collected abstracts from arXiv from the year 2021. These abstracts
are more descriptive than SMD. They widen the knowledge spectrum in our
SMD dataset, as they contain research findings from a larger scientific commu-
nity. Thus this data addition potentially provides multiple (new) connections
between knowledge entities. From this pool of abstracts from various research
fields that cover for instance Astrophysics, and Condensed Matter, to further
1 https://github.com/flairNLP/flair.
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Fig. 1. Pipeline for building a knowledge graph.

align with the scientific context in our primary SMD dataset, we will narrow
down our experiments to some specific research areas. For this, we define a num-
ber of different sets of scientific terms using two principal sources: SMD, and
additionally Unified Astronomy Thesaurus (UAT), to extract only the relevant
abstracts, by simply requiring that the set of terms (or any of them) form part
of the abstract. With this, we have indirectly established to a certain degree a
document similarity among the selected texts before we proceed to building the
respective knowledge graph.

Next, we choose to extract only tri-grams out of our text data using YAKE
[12]. Tri-gram turns out to be an optimal choice as it is sufficient to account for
scientific terms such as James Webb Space (James Webb Space Telescope in full),
and Schwarzschild black holes (a bi-gram black holes in general). YAKE which
stands for Yet Another Keyword Extractor is an automatic keyword extractor,
which includes readily the text pre-processing procedure that involves tokeniza-
tion and stopword removal. The algorithm is succeeded by a statistical feature
extraction then evaluated for a term score, followed by an n-gram (tri-gram in
our case) keyword generation where its score is built out of the term score. The
final step of the YAKE algorithm consists of data deduplication which further
improves the ranking of the relevant keywords. For our purpose, we have chosen
to extract a total of 20 keywords per text, ranked by the distance similarity met-
ric, that is the Sequence Matcher (SEQM), implemented in YAKE. The lower
the SEQM is, the more relevant or important the associated keyword is. These
extracted keywords will serve as the nodes in our knowledge graph. These nodes
are linked directly, that is, considered connected since these keywords come from
a same pool of texts extracted using a particular set of terms (which represent
a certain research topic) as explained before.

Now the question remains on how related the nodes are. We evaluate the
strength of the connection or the semantic link between the nodes by comput-
ing cosine similarities based on the fine-tuned word embeddings from BERT.
The threshold for cosine similarity value varies in each of our experiment, rang-
ing from a minimum of 0.5 to 0.8 (1 being the highest), where below the set
minimum value, we regard the pairs of entities as not strongly connected, and
hence discard them for further analysis. We use the pre-trained transformer-
based language model, BERT (BERTbase), and adaptively fine-tune the model
on our datasets in order to shift BERT into our knowledge domains. Using the
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Building Knowledge Graphs in Heliophysics and Astrophysics 5

fine-tuned embeddings, we obtain a representation of our knowledge graph. For
visualization, we use a package, igraph to create the graphs.

To effectively utilize the word embeddings, we propose the following 4 vari-
ations of BERT shown in Fig. 2, fine-tuned on a Masked Language Modeling
(MLM) task using our datasets.2 In an MLM task, a portion of the words in a
sequence is masked and BERT learns to predict the masked tokens based on the
context.

Fig. 2. BERT variations, differently fine-tuned on heliophysics and astrophysics texts.

Model I. helioBERT: BERT was trained on heliophysics texts.
Model II. Hierarchical helio-astroBERT: We froze the first 10 layers in
helioBERT, and trained the embedding layer and the last 2 BERT layers on
astrophysics texts. Research works in heliophysics and astrophysics share some
common glossaries. Instead of collectively training with the texts from these 2
domains, we hierarchically trained the model where it has retained the prior
knowledge of heliophysics and will then learn about astrophysics.
Model III. Large helioBERT: Compared to helioBERT, a larger amount of
heliophysics texts from different sources was used in the training.
Model IV. Large hierarchical helio-astroBERT: We froze the first 10 layers
in the large helioBERT, and trained the embedding layer and the last 2 BERT
layers on a larger amount of astrophysics texts from different sources.

This work is a collaboration between domain scientists and computer scien-
tists. We are able to manually identify meaningful or strong pairs of keywords
as a validation of our knowledge graph in the respective scientific domain. As
2 Impacts from fine-tuning on a Next Sentence Prediction task are left for future

studies.
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our knowledge graph is fully connected, we sample the results in duplet. We will
discuss some of these examples in the result Sect. 5, at times citing the relevant
research publications.

4 Experimental Setup

4.1 Data

Our primary data source is NASA’s Science Mission Directorate (SMD) dataset,
which contains mainly terms and definitions from 5 scientific domains: Astro-
physics, Heliophysics, Planetary, Earth Science, and Biological & Physical Sci-
ences. Examples of such data instances are:

Term: Big Bang theory
Definition: The theory that the Universe ‘started’ with an event that created time and
space, about 13 billion years ago.

Term: Solar Flares

Definition: A great burst of light and radiation due to the release of magnetic energy

on the sun. Flares are by far the biggest explosions in the solar system, with energy

releases comparable to billions of hydrogen bombs. The radiation from the flare travels

at the speed of light, and so reaches Earth within eight minutes. The energy is generally

absorbed by Earth’s atmosphere, which protects humans on Earth, however, the energy

can cause radio blackouts on Earth for minutes or, in the worst cases, hours at a

time. The radiation from a flare would also be harmful to astronauts outside of Earth’s

atmosphere. Some, but by no means all, flares have an associated coronal mass ejection

(CME).

Fig. 3. Pie charts for the number of terms in the SMD dataset per domain (left), and
for the number of definitions associated with the terms per domain (right).

Figure 3 shows an overview of our SMD dataset. There are a total of 9,291,463
terms, and 3,096,448 definitions. About 97% of the data come from Biological &
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Building Knowledge Graphs in Heliophysics and Astrophysics 7

Physical Sciences, while other domains each contribute 0.3–1% of the data. In
this work, we will focus on 2 domains: Heliophysics, Astrophysics.

The Unified Astronomy Thesaurus (UAT) data3 is a table containing 2826
unique terms in the field of astronomy and astrophysics, categorized in 11 levels
or hierarchies. For example, if one chooses a level 1 term Astrophysical processes,
one of the level 2 terms that follows is Astrophysical magnetism, then there can
be Magnetic fields at level 3, and Primordial magnetic fields at level 4, etc. The
terms become more specific in the higher levels.

Furthermore, we find that there are SMD heliophysics terms which exist
in UAT as well: 2% of a total of 29,846 SMD heliophysics terms are in the
UAT table. We will refer to these overlapping SMD terms at each UAT level
# as “SMD heliophysics level #”. Therefore, although these terms are part of
SMD heliophysics data, they are less heliophysics-apparent and can be more
astrophysics-like. In another word, one can also view this as a shared vocabulary
by the two domains.

Basically, the data is used in the following scenarios to: extract relevant
arXiv abstract, fine-tune BERT, and extract keywords. The data involved for
these purposes are not always the same. In particular, the data we used to fine-
tune BERT are (number of texts):
(i) SMD heliophysics definitions (6,336), (ii) SMD astrophysics definitions
(9,222), (iii) arXiv abstracts collected using some SMD heliophysics terms
(290,316), and (iv) arXiv abstracts collected using some SMD astrophysics terms
(200,000).
The data we used for keyword extractions are (number of texts):
(a) arXiv abstracts extracted using SMD heliophysics level 1 (14,227), (b) arXiv
abstracts extracted using a particular hierarchy in UAT (5,963), (c) SMD helio-
physics definitions (6,336), and (d) SMD astrophysics definitions (9,222).

4.2 Fine-Tuning on BERT: Setup

During the training, we have kept the BERT hyperparameters by default. Fol-
lowing are the specifics for each model training:

helioBERT: Trained on 6,336 SMD heliophysics definitions for 5 epochs.
Hierarchical helio-astroBERT: Trained on 9,222 SMD astrophysics defini-
tions for 5 epochs.
Large helioBERT: Trained on 296,652 texts for 2 epochs. The texts com-
prise the prior 6,336 SMD heliophysics definitions, and 290,316 arXiv abstracts
extracted using a random sample of 100 SMD heliophysics terms.
Large hierarchical helio-astroBERT: Trained on 209,222 texts for 2 epochs.
The texts comprise the prior 9,222 SMD astrophysics definitions, and 200,000
arXiv abstracts randomly sampled from a pool of 626,388 arXiv abstracts
extracted using a randomly sampled 50 SMD astrophysics terms.

3 https://astrothesaurus.org, where the list of UAT terms we used are available at
https://github.com/astrothesaurus/UAT/blob/master/UAT.csv.
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4.3 Keyword Extraction: Setup

For the feasibility of analyzing the results by our domain scientists, for each
experiment, we typically select 100 top keywords (tri-grams) extracted by YAKE
with the lowest SEQM (i.e. the most relevant ones). As we have considered a
priori that all the keywords extracted are related, for n keywords selected for
further analysis, there will be n(n−1)

2 unique pairs of them. We compute the
cosine similarities of all the pairs, where a higher cosine value indicates that the
pair is more closely connected.

We highlight the following 3 experiments, under two contrasting elements:
(i) data sources, and (ii) fine-tuned word embeddings considered.

Experiment I:
The data source is a collection of arXiv abstracts, extracted using a set of terms
from a particular hierarchical branch from the UAT table, based on the level 1
term Astrophysical processes, level 2 term Gravitation, and level 3 term General
Relativity, and all the terms which follow up to level 11. Hence, there exists a
particular knowledge structure here in the data. From this pool of abstracts, we
extracted the keywords using YAKE and analyzed the pairs formed out of the
top 70 YAKE keywords. In the next section, we will show the comparison of the
connections resulted using the embeddings from hierarchical helio-astroBERT
against its large version.

Experiment II:
This experiment plans to show how BERT which has learned some heliophysics
handles the more astrophysical data or the shared vocabularies between helio-
physics and astrophysics domains. The data source is a collection of arXiv
abstracts, extracted using a set of terms which we refer to as “SMD heliophysics
level 1”. This experiment compares the resulted graphs of scientific pairs using
the word embeddings from helioBERT and large helioBERT. Top 89 YAKE
keywords were selected.

Experiment III:
The data source is simply a collection of SMD heliophysics definitions and SMD
astrophysics definitions. This is to examine the connectivity between the two
scientific domains. Top 172 YAKE keywords were selected in this experiment.

We summarize the background details of the experiments in the following
Table 1:

Table 1. Characteristics of the experiments. Shorthand for the model names: lhhaB :
large hierarchical helio-astroBERT, hhaB : hierarchical helio-astroBERT, lhb: large
helioBERT, hb: helioBERT, where their word embeddings are used.

Expt. # unique keywords # pairs SEQM Embedding # pairs with cosine sim., α

I 70 2415 (6.4–25)×10−5 hhaB 203 (α > 0.6)

I 70 2415 (6.4–25)×10−5 lhhaB 334 (α > 0.6)

II 89 3916 (1.0–9.9)×10−4 hB 20 (α > 0.8)

II 89 3916 (1.0–9.9)×10−4 lhB 41 (α > 0.8)

III 172 14,706 (1.0–9.9)×10−4 hhaB 5751 (α > 0.5)
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Building Knowledge Graphs in Heliophysics and Astrophysics 9

5 Results

Our fully-connected knowledge graphs are massive even with under 200 key-
words/nodes. As there is no ground truth to verify all the connections, it is
useful that we could single out a number of interesting or true example pairs for
discussions. We present these examples here and furthermore, we provide some
relevant references accordingly (externally linked).

Result from Experiment I:
We compare the representations resulted from two word embeddings: hierarchical
helio-astroBERT and its large version, focusing on the pairs whose cosine simi-
larities α are higher than 0.6. By the hierarchical helio-astroBERT embeddings,
we point out in particular in Table 2 some interesting example pairs.

Table 2. Example pairs highlighted from Experiment I (with hhab embeddings).

(James Webb Space, Schwarzschild black hole): α = 0.7112

(Generalized Uncertainty Principle, Einstein General Relativity): α = 0.601 (reference)

Although black hole of precisely Schwarzschild is rather too specific (theoretical),
black holes can be connected with James Webb, as data from Webb can be used
to study e.g. the growth rate of supermassive black holes (reference). Also, we
find that the three physics journals (Phys. Rev. Lett, Proc. Roy. Soc, Phys.
Dark Univ.) are connected to each other with a cosine similarity of more than
0.7. Table 3 shows a list of results with the highest cosine similarity.

Table 3. Top results from Experiment I (with hhab embeddings).

(Phys. Rev. Lett., Laser Interferometer Gravitational-wave): α = 0.8637

(polynomial curvature invariants, Gravitational Lensing Experiment): α = 0.8703

(Small Magellanic Cloud, Large Magellanic Cloud): α = 0.8815

(Counterpart All-sky Monitor, Laser Interferometer Gravitational-wave): α = 0.9624

(Cosmic Microwave Background, Phys. Rev. Lett): α = 0.9812

While, by the large hierarchical helio-astroBERT embeddings, we point out
in particular in Table 4:

Table 4. Example pairs highlighted from Experiment I (with lhhab embeddings).

(James Webb Space, Cold Dark Matter): α = 0.8701

(Cold Dark Matter, Webb Space Telescope): α = 0.6076

(Event Horizon Telescope, Massive Black Hole): α = 0.6124

These are again convincing pairs. The data from James Webb will help to verify
the existence of cold dark matter (reference). Note the changes in the cosine
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similarity α for the pair containing Cold Dark Matter when its partner is James
Webb Space or Webb Space Telescope. Even though the keyword extraction by
YAKE is not complete as in James Webb Space Telescope (as we had required
for tri-gram), the associated cosine similarity is still high. Table 5 shows a list of
results with the highest cosine similarity.

Table 5. Top results from Experiment I (with lhhab embeddings).

(Fourth Mexican School, Laser Interferometer Gravitational-wave): α = 0.8828

(Gravitational Lens Astrophysics, Einstein General Relativity): α = 0.8864

(Massive Black Hole, Extremely Compact Objects): α = 0.9388

(Expansive Nondecelerative Universe, Field Dark Matter): α = 0.9489

(Interferometer Space Antenna, Cosmological Gravitational Lensing): α = 0.9767

By narrowing down our scope in the text corpus to gravity in general (built
off a particular hierarchy in UAT), we are able to observe extremely informative
pairs right from this research area.

Result from Experiment II:
We compare the representations resulted from two word embeddings: helioBERT
and its large version, focusing on the pairs whose cosine similarities α are higher
than 0.8. By the helioBERT embeddings, we point out in particular in Table 6
the example pairs found. Table 7 shows a list of results with the highest cosine
similarity.

Table 6. Example pairs highlighted from Experiment II (with hb embeddings).

(Spitzer IRAC based, Big Bang theory): α = 1 (reference)

(phantom divide line, quantum gravity community): α = 0.8373 (reference)

Table 7. Top results from Experiment II (with hb embeddings).

(neutral massive fields, phantom divide line): α = 0.9494

(main modern developments, CMB anisotropy data): α = 0.9609

(GOYA Survey imaging, QSO absorption line): α = 0.9892

(understanding current theories, Long Baseline Array): α = 1

(spinning fluid embedded, Supernova Legacy Survey): α = 1

While, by the large helioBERT embeddings, we point out in particular in
Table 8 some example pairs.
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Table 8. Example pairs highlighted from Experiment II (with lhb embeddings).

(asymmetric dark matter, Standard Model imposed): α = 1

(Hubble Volume N-body, Long Baseline Array): α = 1 (reference)

(phantom divide line, main modern developments): α = 0.9455

(phantom divide line, dark matter halo): α = 0.8635

(main modern developments, dark matter halo): α = 0.8633

Although the keywords asymmetric dark matter and Standard Model imposed
are paired with cosine similarity 1 (Table 8), it should not be taken literally,
as we need to go beyond the Standard Model in order to explain dark matter.
Table 9 shows a list of results with the highest cosine similarity.

Table 9. Top results from Experiment II (with lhb embeddings).

(observed Velocity Dispersion, X-ray analyses lead): α = 0.9513

(Cosmological General Relativity, cosmic microwave background): α = 0.9891

(Hartle-Hawking No-Boundary Proposal, Density linear perturbations): α = 1

Interestingly, these highlighted examples show that BERT with only helio-
physics knowledge is able to identify with a good indication of the strength of
the relations on astrophysical contents such as CMB, Big Bang theory, to name
a few.

Result from Experiment III:
By hierarchical helio-astroBERT embeddings, we find elements from the 2
domains connected with more than 0.5 cosine similarity, in particular in Table 10
we point out some example pairs.

Table 10. Example pairs highlighted from Experiment III (with hhab embeddings).

(Martian satellite Phobos, Heliospheric Solar Magnetospheric): α = 0.5349

(Measurements CME motion, Heliospheric Solar Magnetospheric): α = 0.5284 (reference)

There are indeed studies on interactions between solar wind and the Mars-
Phobos (reference). Table 11 shows a list of results with the highest cosine simi-
larity.

The cross-domain relations that we find are encouraging. The terms in SMD
dataset are usually more technical, very specific to a smaller research commu-
nity, as it involves for example names of instruments. Hence the connections
established here are more technical than conceptual.
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Table 11. Top results from Experiment III (with hhab embeddings), with α = 1.

(South Pacific Ocean, Synthetic Aperture Radar) (reference)

(Geocentric Equatorial Inertial, Lunar Reconnaissance Orbiter)

(SSA Space Weather, Explorer Mission satellite)

(Sciences Laboratory Facility, Polar Cap Indices)

(Naval Observatory Astronomical, Small Explorer Project)

6 Discussions

In our approach, firstly, the strength of the cosine similarity is rather relative to
the scope, and the size of the text corpus being considered during both the fine-
tuning stage and keyword extraction. The scope of the corpus can be inferred
from the set of terms we used to extract the relevant texts. It is non-trivial
to determine exactly the relatedness of the entities, as the rank could change
according to the depth and width of the respective research area, or its collection
of research papers. On the other hand, one can see from Table 1 that a larger
fine-tuned language model tends to produce a larger number of pairs at the same
level of cosine similarity.

Secondly, there is not a clear best language model among those we proposed.
The reason is related to the first point. Here we have looked at the aspect of
hierarchical training, and also the results from using a different text size in
fine-tuning. We do find interesting outputs from all the cases considered. Most
importantly, the type of texts where the keyword extraction is performed plays
a crucial role in producing some of the strongest relations: there is an implicit
term hierarchy in the texts from Experiment I; shared scientific terms between
the 2 domains from Experiment II; purely a combination of the technical terms
from the 2 domains from Experiment III. Thus, we think that the models could
as well complement each other in completing a knowledge graph. For more
discussions about the related challenges, see e.g. [13].

7 Conclusions

We propose an embedding-based method to construct a knowledge graph in
heliophysics and astrophysics domains, utilizing the cosine similarities computed
from the word embeddings of the respective domain-specific BERT. Bypass-
ing the need for a fine-tuned named entity extraction or such labeled training
dataset, and out of a pool of texts selected based on a set of controlled scien-
tific terms, our constructed knowledge graph is able to present many convincing
relations of scientific concepts or terms in and across the domains. Moreover,
our fine-tuned BERT models can also be used for other downstream tasks such
as NER.

For future work, we plan to improve our validation method by using auto-
matic metrics proposed in such as [14,15] which are based on declarative and
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mined rules, in addition to human-in-the-loop. We also plan to extend our
method to study the synergies with the remaining scientific domains of plan-
etary, earth science and biological & physical sciences.

In our fine-tuning of BERT and also in the arXiv abstract extraction (arXiv
content to enrich our SMD dataset), scientific terms from the SMD dataset have
been actively involved. Our ultimate goal is to develop our approach into a AQ2

useful search tool for domain scientists to assist them in their research, and for
integration into NASA’s SMD data system.
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