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ABSTRACT 
The size of the National Aeronautics and Space Administration 
(NASA) Science Mission Directorate (SMD) data catalog is grow-
ing exponentially, allowing researchers to make discoveries. How-
ever, making discoveries is challenging and time-consuming due 
to the size of the data catalogs, and as many concepts and data 
are indirectly connected. This paper proposes a pipeline to gen-
erate knowledge graphs (KGs) representing diferent NASA SMD 
domains. These KGs can be used as the basis for dataset search en-
gines, saving researchers time and supporting them in fnding new 
connections. We collected textual data and used several modern 
natural language processing (NLP) methods to create the nodes and 
the edges of the KGs. We explore the cross-domain connections, 
discuss our challenges, and provide future directions to inspire 
researchers working on similar challenges. 
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1 INTRODUCTION 
As the interest in space exploration has increased, along with digi-
talization, the number of datasets in NASA’s data catalog is growing 
exponentially. By 2023, the National Aeronautics and Space Ad-
ministration (NASA) Science Mission Directorate (SMD) foresees 
the generation of at least 400 petabytes per year and expects this 
number to increase as new models are run, and new missions are 
launched [10]. NASA has expressed the need for a search engine 
that enables scientists to search across the fve NASA SMD scientifc 
pursuits and allows them to discover new connections [5, 11]. 

Search engines are often built with KGs as their backbone. KGs 
are a popular method to structure big and complex information. 
KGs organize information in a graph structure. There is no fxed 
defnition of a KG, but in general, the nodes represent entities, and 
the edges represent the type of relationships [12]. KGs make it 
easier to digest complex information and make it easier to fnd 
connections between diferent concepts. 

There are initiatives specifcally for creating KGs for specifc 
NASA SMD domains, such as the Heliophysics KNOWledge Net-
work (Helio-KNOW) project [23]. Helio-KNOW is a community-
build collection of software and systems to organize Heliophysics 
information1. However, there are no KGs for all fve of the NASA 
SMD domains. In addition, research is needed to connect the KGs 
of the fve diferent NASA SMD scientifc pursuits: (i) Heliophysics, 
(ii) Astrophysics, (iii) Planetary Science, (iv) Earth Science, and (v) 
Biological & Physical Science. There has been an increased interest 
in multidisciplinary research between these diferent domains. For 
example, heliophysicists and astrophysicists can beneft from study-
ing the high-energy solar faring activity together to understand 
stellar fares [7]. Before merging the KGs graphs with, for example, 
entity alignment [29, 31], there is a need for a better understanding 
of the domain overlap. 

In this paper, we outline how we approached building KGs for 
the NASA SMD, of which the main steps are: (i) the collection of 
sufcient relevant textual data to train the NLP models, (ii) the 
selection of NLP algorithms to create the nodes and the edges of 
the KGs, (iii) exploring the overlap of the domains, (iv) validation, 
and, (v) visualization. While a signifcant contribution of this paper 

1Link to Helio-KNOW project Github: https://github.com/rmcgranaghan/Helio-
KNOW 
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is providing a pipeline for generating KGs for the NASA SMD 
domains, our discussion of the challenges and recommendations 
for future work is valuable to other researchers. We also show our 
initial results of analyzing the overlap of the NASA SMD scientifc 
pursuits. 

This paper is structured as follows. We frst outline related lit-
erature and work in Section 2. In Section 3, we propose a pipeline 
to generate KGs for the diferent NASA SMD domains. We present 
initial results in Section 4, including an overview of the data gath-
ered and a cross-domain analysis. Finally, we have an extensive 
discussion of the challenges we faced and suggestions for future 
work in Section 5 followed by a concise conclusion in Section 6. 

2 RELATED WORK 
In this section, we describe the main relevant existing research 
related to this work. We introduce the main concepts of KGs (Sec-
tion 2.1) and discuss methods used for scientifc information pro-
cessing (Section 2.2). 

2.1 Knowledge Graphs 
The goal of KGs is to organize information in a graph structure. KGs 
have diferent defnitions and forms, but in general, the nodes of a 
KG represent entities, i.e., concepts, objects, situations, or events, 
and the edges represent the relationship between the entities, which 
can both be qualitative and quantitative [12]. KGs gained popularity 
when big tech companies, such as Google, Microsoft, Facebook, 
and Yahoo!, created their own KGs and used them as the core of 
their semantic search engines. The three most well-known KGs are 
DBPedia [2], Wikidata [30], and Google KG [26]. 

2.2 Scientifc Information Processing 
In science, there are large volumes of complex information. KGs 
are popular [3, 20] to structure all this information. One approach 
to generating scientifc KGs is extracting entities from scientifc 
documents [14, 16, 33]. There are multiple named-entity recog-
nition (NER) algorithms to extract scientifc entities, such as As-
troBERT [13], and SciBERT [4]. These scientifc entities can serve 
as the nodes of the KGs. AstroBERT and SciBERT are based on 
Google’s Bidirectional Encoder Representations from Transformers 
(BERT) [9]. 

3 METHODOLOGY 
We propose a pipeline to generate KGs for the fve NASA SMD 
domains. The pipeline consists of fve major components, pre-
processing (Section 3.1), entity extraction (Section 3.2), entity link-
age (Section 3.3), validation (Section 3.4), and visualization (Sec-
tion 3.5), which are visualized in Figure 1. We describe all fve 
components below. 

3.1 Pre-processing 
We gather textual data from diferent sources. We need a high 
amount of textual data as this will be the input of the NLP models. 

The NASA SMD provided a list with defnitions from the fve difer-
ent Scientifc Pursuits 2. These defnitions are a valuable source be-
cause they are created by NASA and used internally by researchers. 
We also downloaded terms from the Unifed Astronomy Thesaurus 
(UAT), which is a community-supported, open-source project from 
the American Astronomical Society and builds upon the Interna-
tional Astronomical Union (IAU) Thesaurus3[1]. The UAT consists 
of astronomical concepts and their inter-relationships. The strength 
of the UAT is that anyone in the community can contribute by pro-
viding additions, refnements, and revisions; therefore, the UAT’s 
quality and quantity are constantly being improved. To have suf-
cient data to train NLP models, we want to gather more textual data. 
We opt to web scrape Wikipedia summaries and arXiv abstracts 
based on the UAT terms. We web scrape Wikipedia because of the 
broad coverage of relevant concepts and arXiv abstracts because 
they contain a lot of relevant technical terms. In Section 4.1, we 
provide more details about the web scrape method we applied and 
how much textual data we gathered from all four sources. 

The textual data is stored in diferent formats, such as Portable 
Document Format (PDF), Comma-Separated Values (CSV), Com-
putable Document Format (CDF), and HyperText Markup Language 
(HTML), and therefore needs to be normalized to ensure that all 
the texts have the same format. We tokenize and lemmatize all 
the texts. With tokenization, the texts are divided into tokens, and 
with lemmatization, all the words of the texts are converted to their 
roots. We also remove stopwords and identify common bigrams 
and trigrams. 

3.2 Extraction 
To generate the nodes of the KGs, we extract the keywords from 
the texts. We use Yet Another Keyword Extractor, better known as 
Yake!4 [6]. Yake! is an unsupervised automatic keyword algorithm 
that returns a list of keywords and a corresponding quantitative 
score indicating the relevance of each keyword5. Examples of key-
words extracted with Yake! from the UAT are Tauri stars, Kerr black 
holes, Classical novae, and Hubble Space Telescope 6. In Section 5.4, 
we discuss other methods that we tried and tested to extract entities 
to generate the nodes of the KGs. 

3.3 Linkage 
To link the nodes in the KGs, we considered two diferent tech-
niques. First, count the frequency of the keywords co-occurring in 
a sentence as subjects and objects. The higher the frequency, the 
stronger the edge between the two nodes. Second, we quantify the 
strength of the edges by calculating the semantic similarity between 
NEs with the help of large pre-trained NLP models. For example, 
we fnetune a model of the BERT model based on all the textual 

2Example of the defnition of Coronal Mass Ejection: An eruption in the outer solar 
atmosphere that sends billions of tons of magnetized plasma clouds into interplanetary 
space. When traveling at high speeds these ejections create shocks in the solar wind. 
Earth-intercept of a CME is often followed by a geomagnetic storm. 
3Link to the UAT glossary: https://astrothesaurus.org 
Link to the UAT glossary in CSV format: https://github.com/astrothesaurus/UAT/blob/ 
master/UAT.csv
4Link to Yake!: https://github.com/LIAAD/yake 
5The Yake! keyword is more relevant with a lower score. 
6More examples of keywords extracted with Yake! can be found in [22]. 
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Figure 1: Proposed Pipeline for the Generation of Knowledge Graphs for the NASA SMD. 

data we collected and calculate the semantic similarity between the 
nodes [9]. 

3.4 Validation 
Validating the KGs is a big challenge as the nodes of the KGs mainly 
contain technical terms that only experts are fully familiar with. 
Examples of the nodes are: Fra Mauro, Galilean Moons, Chirality, 
YORP Efect, Nectarian and Caldera. Therefore, to validate the quality 
of the KGs, we validated the quality ourselves and invited domain 
experts to provide feedback. In Section 5.1, we discuss alternative 
validation techniques. 

3.5 Visualization 
To gain a deeper understanding of the KGs, we create visualizations 
with NetworkX7 [15], iGraph8[8], Pyvis9[25], and arena3D10[24]. 
All these four software packages have their own benefts and short-
comings. These visualizations assist us in validating the quality of 
the KGs but can also assist researchers make discoveries. 

4 INITIAL RESULTS 
In this section, we would like to discuss some initial results. This 
includes describing the type of data we collected (Section 4.1) and 
the results of exploring the overlap between some of NASA SMD’s 
scientifc pursuits (Section 4.2). 

4.1 Data Collection 
We collected data from four diferent sources: (i) SMD, (ii) arXiv, 
(iii) Wikipedia, and (iv) UAT. We used a defnition list provided 

7Link to NetworkX: https://networkx.org/ 
8Link to iGraph: https://igraph.org/ 
9Link to Pyvis: https://pyvis.readthedocs.io/en/latest/
10Link to Arena3D: https://arena3d.org/ 

Table 1: A Summary of all the Textual Data Collected. 

Source Size Type 

Science Mission Directorate 3,096,448 defnitions 
arXiv 168,084 abstracts 

Wikipedia 695 summaries 
Unifed Astronomy Thesaurus 2,826 terms 

by the NASA SMD consisting of more than three million defni-
tions and the UAT consisting of 2,826 terms. We web scraped rele-
vant Wikipedia summaries and arXiv abstracts based on these UAT 
terms. 

We used a collection of all the arXiv abstracts up to the end of 
2021, a total of approximately two million abstracts 11. We fltered 
for abstracts that are related to the UAT terms. Specifcally, for each 
abstract of this collection, we extracted the main 20 keywords with 
Yake! and selected the abstracts for which the semantic similarity 
between the 20 keywords and the UAT terms surpasses a certain 
threshold. We opted for 20 keywords as this was a balanced trade-of 
between the quantity and the quality of keywords. While we wanted 
to collect a high number of keywords, we also needed the keywords 
to be relevant. In total, we ended up with 168,084 relevant arXiv 
abstracts. We followed a similar procedure for selecting relevant 
Wikipedia abstracts, selecting 695 summaries12. Table 1 shows the 
main statistics, source, size, and type of all the textual data we 
gathered. 

4.2 Overlapping Domains 
In the future, we want to merge the KGs of the diferent NASA SMD 
domains with entity alignment [29, 31]. Before merging the KGs, we 

11Link to the arXiv abstracts: https://huggingface.co/datasets/gfssore/arxiv-abstracts-
2021/blob/main/README.md
12We used the wikipedia module of Python to parse summaries from Wikipedia. Link 
to the wikipedia module: https://pypi.org/project/wikipedia/ 
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want to better understand how the diferent domains overlap. We 
experimented with k-means, an unsupervised clustering algorithm 
where all observations are partitioned into k clusters where each 
observation belongs to the cluster with nearest mean13[19]. 

We applied k-means to cluster a random selection of 1,500 Plane-
tary Science and 1,500 Heliophysics arXiv abstracts without provid-
ing domain labels. We set k, the number of clusters, equal to two, as 
we were interested in whether the k-means algorithm can broadly 
distinguish between the two domains. K-means managed to classify 
the abstracts with greater than 80% accuracy. This high accuracy 
indicates a distinct diference between these two domains. Contrar-
ily, we suspect the accuracy was not perfect due to a signifcant 
overlap in terminology between the domains. 

5 CHALLENGES AND FUTURE DIRECTIONS 
Many challenges arose during the efort and may show to be a 
continuous challenge as the work continues to improve the KGs. In 
this section, we will discuss our challenges concerning validation 
(Section 5.1), access to validated ontologies (Section 5.2), compu-
tational restraints (Section 5.3), generating KG nodes (Section 5.4), 
domain overlap (Section 5.5), and visualization (Section 5.6). 

5.1 Validation 
Validating KGs is our biggest challenge. We asked domain experts 
to assess the global quality of the KGs and provided feedback our-
selves. Manually validating was time-consuming and due to time 
and resource constraints we only managed to validate parts of the 
KGs. The main feedback was that the KGs with the Yake! keywords 
were more appropriate. In Section 5.4, a deeper discussion about 
the quality of the nodes is given. In the future, we would like to 
include a human in the loop, so the quality of the KGs can contin-
uously be improved. One option would be that users of the KGs 
can suggest changes, directly apply changes, or changes are made 
indirectly based on the users’ behaviour [21]. In addition, we aim 
to implement automatic metrics such as Corroborative Fact Val-
idation (COPAAL) [27], Deep Fact Validation (DeFacto) [18], or 
FactCheck [28]. COPAAL is easy to implement as it implements 
path scoring solely based on the provided KG. COPAAL can be com-
plemented by DeFacto and FactCheck as these two metrics validate 
the quality of the KG based on external knowledge resources. 

5.2 Access to validated ontologies 
We intended to use validated ontologies as the backbone of our 
KGs. Unfortunately, we did not fnd relevant existing validated 
ontologies. We considered building ontologies from scratch and 
integrating them across the diferent NASA SMD domains, but 
eventually, we did not create them due to time constraints. In the 
future, we want to build ontologies manually and embed them in 
the KGs. 

5.3 Computational Restrains 
Creating the KGs and experimenting with the data is computation-
ally expensive and time-consuming. The big data sets, in combi-
nation with the diferent NLP algorithms, result in complex and 

13For k-means, we use the scikit-learn, also known as sklearn, a module of Python. 
Link to scikit-learn module: https://scikit-learn.org/ 

intense processes. Due to time limitations, we limited the data size 
for some experiments. For example, for our domain overlap experi-
ment (see Section 4.2), we limited the number of abstracts to 3,000 
and only ran these experiments for two out of the fve NASA SMD 
scientifc pursuits. 

5.4 Generating nodes 
To generate nodes for the KGs, we considered multiple methods. 
We started by extracting the subject, predicate, and object for each 
sentence of our dataset. Instead, we found that the nodes generated 
by Yake! were the most suitable. For example for a sentence from 
the NASA SMD defnition list They are made of cooler solar material, 
or plasma, supported in the sun’s atmosphere by magnetic felds., the 
former extract they and magnetic felds as the subject and object 
while the latter extracts solar materials and magnetic felds as key-
words. We do believe that for the generation of the nodes, there is 
still the opportunity for improvement as Yake! is not specifcally 
designed to recognize terms related to the NASA SMD. In the future, 
we aim to create NER algorithms similar to AstroBERT [13], and 
SciBERT [4]. In line with these two NER algorithms, we want to 
fne-tune models from the BERT family [9]. 

5.5 Domain Overlap 
To promote cross-domain research, we need to generate fve KGs, 
one for each of NASA’s SMD domains, and we need to merge them. 
To merge the KGs, we need to apply entity alignment [29, 31]. Entity 
alignment is a technique where entities of diferent KGs are identi-
fed to be referring to the same real-world object [32]. Entity align-
ment is challenging, as we face many homonyms. Homonyms are 
words that share the same spelling but have diferent meanings [17]. 
For example, the term storms could point to the geomagnetic storms 
for solar physicists or ice storms on earth. 

5.6 Visualization 
The KGs we created were too complex to visualize. Clustering the 
nodes helped a little, but we had too many nodes to create a visually 
enticing image. We visualized KGs based on the data selections, but 
we found that these KGs were too limited. In addition, generating 
interactive KG required too many computational resources and 
led to slowly working interactive KGs. In the future, we would 
like to build a robust Application Programming Interface (API) for 
3-D visualization of the knowledge graphs to assist researchers in 
fnding new connections. 

6 CONCLUSION 
The size of the NASA SMD data catalog is growing exponentially 
due to digitalization and the launch of new models. The NASA SMD 
promotes cross-domain opportunities, while historically, the data 
management of these domains has been in silos. The advancement 
of NLP allows us to process large amounts of textual data and gen-
erate cross-domain discovery KGs. This work presents a pipeline to 
generate KGs for the NASA SMD domains. We explore the domain 
overlap and discuss how the KGs can be merged in the future. 
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