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Rising temperatures and climate change are projected to worsen landslides [1, 2] with the increase of sustained droughts
and intense rainfall events [3–5]. Given these predictions, there is a growing need for timely and accurate landslide assessment
methods that can inform policymakers and emergency responders. A Synthetic Aperture Radar (SAR), as an active imaging
sensor independent of cloud coverage, time of the day, and weather conditions, can be used to map the landslides in the aftermath
of a disaster. It has been demonstrated that a simple approach like thresholding can work quite well with polarimetry data. Still,
it often requires a lot of manual tuning and long time series of SAR data that are unavailable when the landslide is triggered [6,7].
Deep Learning (DL) methods are widely used in the geosciences in general, [8, 9], and have been proposed to make sense of the
SAR data in a rapid response setting, segmenting the landslides with high skill [10–12]. However, the accuracy of such models is
often evaluated in isolation in individual regions, which may overestimate the performance of the models in a real-world setting.
Here, we show that conclusions drawn in isolation and the skill of such models do not necessarily transfer between regions. A
landslide detector should be evaluated in its ability to detect landslide events that are not present in the training set.

In this study, we explore to what extent a segmentation model trained to detect landslides in one area is transferable to
another area. We propose a simple augmentation-based setup to improve transferability. With SAR data, traditional computer
vision geometric augmentations, such as rotation, would result in non-plausible imagery that would never be generated by SAR
satellites [13]. We are careful to select augmentations that might simulate some semantically meaningless variance between
different SAR images as follows. Gaussian Blurring instructs the model not to pay attention to the fine details of the imagery but
to the more general structures. Gaussian Noise instructs the model to be invariant to noise in individual pixels. Since we add
this noise in the log-transformed amplitudes, it simulates speckle noise, which characterizes SAR imagery. Motion Blurring
simulates the effect of suboptimal focusing of the raw radar echoes into single-look complex SAR imagery. Random cropping
with resize teaches the model a scale invariance for small and big landslides, and to capture landslides that are partially present in
the image. For our experiments, we consider the datasets from two earthquake-triggered landslides in Mt Talakmau, Indonesia,
and Hokkaido, Japan [14]. The datasets are provided as datacubes that cover the two regions and contain SAR polarimetry,
interferometry data, topography data, and landslide labels. For our use case, we consider an emergency response setup where
several SAR images are available before a landslide and only one SAR image is available after the landslide.

The machine learning pipeline is set up to solve a segmentation task, using a U-Net [15] model with a ResNet-50 encoder.
We stack VV and VH bands before and after the landslide as different input channels of the segmentation model. Notice that
regardless of the number of time steps we use, the number of SAR channels remains constant as we take the pixel-wise mean
value across all time steps before the event. Landslides occur in particular landscapes, making features derived from Digital
Elevation Models (DEM) common for the task. We consider aspect, slope, and curvature as additional input features and dismiss
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Table 1. Performance in terms of AUPRC for the experiments in the Hokkaido validation set and the Mount Talakmau test
set. Best performance in bold, second best underlined. SAR: VV, VH before and after the landslides. SAR & DEM: SAR, plus
DEM-derived features. AUG: Augmentations have been applied during training.

Performance (AUPRC)
Hokkaido (Train Region) Talakmau (Test Region)

SAR 0.618 0.421
SAR & DEM 0.639 0.388
SAR (AUG) 0.612 0.456

SAR & DEM (AUG) 0.636 0.402
No skill baseline 0.092 0.062

Hokkaido (Train Region) Mt. Talakmau (Test Region)

Predictions
Targets

Fig. 1. Examples of the two regions’ predicted landslide maps (top row) versus ground-truth target maps (bottom row) from the
test set. Background (no landslide) areas are in purple, landslide affected areas are in yellow.

elevation itself as it is highly variant across different regions. We divide the two datacubes into data chips of size 128x128
pixels (each pixel is 10m×10m in spatial resolution), keeping only chips that include at least one landslide pixel to reduce the
imbalance [10]. From the Hokkaido dataset, we extract 216 chips for training, and 61 chips for validation. We extract the test set
containing 61 128×128 chips from the other area, namely Mt Talakmau, Indonesia. In the Hokkaido dataset, about 9% of pixels
are labeled as landslides, while in the Mt Talakmau dataset, this percentage is 6%. Model performance is measured using the
Area Under the Precision-Recall Curve (AUPRC), which is appropriate for imbalanced datasets.

Table 1 contains the results of the experiments. We see that the DEM-derived features are helpful for the region where the
training has occurred, while they are detrimental to the transfer to another region. This is explained as a spatial overfitting of the
model, that is avoided when removing the DEM-derived features. Interestingly, when adding the augmentations, the performance
in Hokkaido (training region) is not affected, while it is consistently improved in the Mount Talakmau dataset (test region). This
shows that training with augmentations increases the generalizability of the representations, improving the transfer of the model
to another region. In Figure 1 we can see examples of the model’s prediction versus the target image in both regions. As was also
revealed by the metrics, the figure shows the model’s skill both in the training and test region. While the segmentation is not
perfect, the predictions match the target quite well.

In this study, we show how the results obtained in just one region do not necessarily generalize to other regions. While
DEM-derived features seem helpful when training and testing in the same region [12], using them lowers the generalizability of
the models. Potentially this could change with larger-scale labeled data. In the absence of large-scale data, we find that simple
augmentations designed to work with SAR data help us train more robust models across different regions.
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