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Abstract

Extreme Ultraviolet (EUV) light emitted by the Sun impacts satellite operations and
communications and affects the habitability of planets. Currently, EUV-observing
instruments are constrained to viewing the Sun from its equator (i.e., ecliptic),
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limiting our ability to forecast EUV emission for other viewpoints (e.g. solar
poles), and to generalize our knowledge of the Sun-Earth system to other host stars.
In this work, we adapt Neural Radiance Fields (NeRFs) to the physical properties
of the Sun and demonstrate that non-ecliptic viewpoints could be reconstructed
from observations limited to the solar ecliptic. To validate our approach, we train
on simulations of solar EUV emission that provide a ground truth for all viewpoints.
Our model accurately reconstructs the simulated 3D structure of the Sun, achieving
a peak signal-to-noise ratio of 43.3 dB and a mean absolute relative error of 0.3%
for non-ecliptic viewpoints. Our method provides a consistent 3D reconstruction
of the Sun from a limited number of viewpoints, thus highlighting the potential to
create a virtual instrument for satellite observations of the Sun. Its extension to real
observations will provide the missing link to compare the Sun to other stars and to
improve space-weather forecasting.

1 Introduction

The Sun enables life on Earth, but is also hazardous for humans and satellites in space. Extreme
Ultraviolet light (EUV) changes thermospheric density, affecting atmospheric drag on satellites in
low Earth orbit. Current EUV imaging instruments are tied to the ecliptic plane, i.e. they orbit and
image the Sun from its equator, and no satellites currently observe the solar poles directly. Over the
last 15 years, at most three satellites observed the Sun at any given time. However, a complete image
of the Sun is required to forecast EUV radiation to protect our assets, and to relate the Sun to other
stars in the universe that are observed as distant points in the sky with unknown inclination angles.

Reconstructing the 3D geometry of the Sun is very challenging. The outermost layer of the solar
atmosphere, the solar corona, consists of partially-ionized plasma (i.e., hot gas) that emits light of all
wavelengths, including in EUV. This radiative environment, made of a optically thin plasma, is very
different than Earth’s in which solid and optically thick objects mainly absorb and reflect light. In
optically thin environments, observed intensities can originate from multiple points, which prevents
the precise mapping to a single spatial location.

Due to the lack of global 3D coronal reconstructions, current state-of-the-art 3D solar maps com-
bine simultaneous images viewed by different observers to create synchronic maps (e.g., Caplan
et al., 2016). These maps are assembled by reprojecting different viewpoints on to a spherical
surface, assuming that the observed intensity originates from a single plane and neglecting the
three-dimensionality of the solar corona. This leads to projection effects that are especially prominent
near the limb (i.e., edge) of the solar disk and reduces the scientific utility of off-limb imaging.

To maximize the science return of multiple viewpoints, we propose a novel approach that unifies
and smoothly integrates data from multiple perspectives into a consistent 3D representation of the
solar corona. We leverage Neural Radiance Fields (NeRFs: Mildenhall et al., 2020), which are
(fully-connected) neural networks that can achieve state-of-the-art 3D scene representation and
generate novel views from a limited number of input images. We adapt standard NeRFs to match the
physical reality of the Sun, introducing radiative transfer and geometric sampling to create a solar
NeRF (SuNeRF). In the absence of observations from outside of the ecliptic, we evaluate our SuNeRF
on simulated images of the Sun in EUV that provide ground truth information for all viewpoints.

2 Data

In this work, we take advantage of a magnetohydrodynamic (MHD) simulation of the solar corona
used to forecast the state of the solar atmosphere prior to the 2019-07-02 total solar eclipse by
Predictive Science Inc. (PSI; see the website1 and Boe et al., 2021, 2022, for more details). MHD
simulations estimate the global 3D distribution of plasma parameters and magnetic field in the solar
atmosphere, allowing one to forward model EUV images and other diagnostics from any viewpoint
(Mikić et al., 2018). Figures 1(a) and 1(b) show the observed EUV image and data-constrained
simulation respectively. The PSI model dataset consists of 256 forward modeled 193Å images
captured from evenly spaced viewpoints, providing full coverage of the simulated Sun (Figure 1(c)).

1Predictive Science Inc. 2019-07-02 total solar eclipse prediction: www.predsci.com/eclipse2019.
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Figure 1: (a) Satellite image of the Sun at 193Å that was captured from the ecliptic on 2019-07-02 at
20:41:08 (UT). (b) Simulated image of the satellite viewpoint (offsetted), extracted from a 3D model
of the Sun. (c) Positions of the 256 viewpoints that were extracted from the 3D model. The color
coding indicates which viewpoints were used for the training set (magenta) and the test set (green).

Figure 2: Overview of our SuNeRF model that is trained to reconstruct the geometry of the Sun from
a set of training images. The simulation volume is represented by a neural network that maps each
coordinate point (x, y, z) to the corresponding emission and absorption coefficient (ε, κ). For each
pixel, we sample rays from the volume and compute total intensity using radiative transfer principles.

We train our SuNeRF model on synthetic observations viewed from |latitudes| ≤ 7◦ (i.e., 32 images
viewed from the ecliptic), and we test the model on the the remaining viewpoints (i.e., images viewed
from outside of the ecliptic). This idealized dataset allows us to test if the SuNeRF can successfully
generate an accurate 3D reconstruction solely from images taken from the ecliptic.

3 Methods: From NeRFs to SuNeRFs

NeRFs (Mildenhall et al., 2020) learn the density and color at each point in a volume based on a set
of images captured from different viewpoints. The resulting representation can then be used to render
novel scenes. In this study, we apply two primary modifications to the NeRF model to account for
the physical reality of the Sun and generate novel views of our star, which we refer to as a Sun NeRF
(SuNeRF). NeRFs were designed to represent solid or transparent objects. However, pixel values
in images of the solar corona integrate emitting and absorbing (i.e., optically thin) plasma elements
along the line-of-sight. Therefore, we replace the density and color predictions of NeRFs with
emission and absorption. For each pixel, we construct the total emission by sampling points along the
ray path. At each point (x, y, z), our network predicts the emission and absorption coefficients (ε, κ).
The emission per point, I , is evaluated by multiplying the emission coefficient κ with the spacing of
the sampled ray ds. The absorption per point A is, by definition, scaled between 0 and 1 (total and no
absorption, resp.) using A(x, y, z) = exp (−κ ds). The total observed intensity Î is then computed
by integrating all sampled points, where each intensity value is reduced by absorption along the path
of propagation (from the origin to the observer):

Î =
∑
k

Ik ∗
k−1∏
i

Ai, (1)

where the indices refer to the sampled points along the ray. For the final pixel value, we use an asinh
stretching to optimize the value range for training. We also adapt the NeRF ray sampling to account
for the geometry of the Sun. We sample rays ranging from [-1.3, 1.3] solar radii from the Sun.
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Figure 3: Evaluation of the SuNeRF using forward-modeled data of the EUV Sun at 193Å. (a) PSNR
and SSIM evaluated at 256 viewpoints, represented by points at the corresponding latitudes and
longitudes. The color indicates the quality of the reconstruction, with larger values indicating a better
agreement with the ground truth. Red dashed lines at latitudes of ±7◦ mark the separation between
the training and test viewpoints. (b) Qualitative comparison at different latitudes between the baseline
method (spherical reprojection; first row), the simulation data (ground truth; second row), and the
SuNeRF reconstruction (third row). Difference maps (fourth row) identify regions where our method
deviates from the ground truth. Uncertainty estimates (fifth row) are in agreement with the errors. .

Table 1: Metrics of performance for a synchronic map (baseline) and a SuNeRF applied to the
test dataset (non-ecliptic viewpoints), including the peak signal-to-noise-ratio (PSNR), structural
similarity index (SSIM), mean absolute relative errors (MAE), and mean relative errors (ME).

Method PSNR (dB) SSIM MAE ME
Baseline - 193Å 23.6 0.68 3.4% -1.1%
SuNeRF - 193Å 43.1 0.98 0.3% 0.05%
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The endpoints of rays passing through the Sun are fixed to the surface (i.e., no emission from the
interior), to account for the opaqueness of the solar surface (i.e., the transition to an optically thick
medium). An overview of the SuNeRF model is depicted in Figure 2.

4 Results

We trained our SuNeRF model for 120k iterations (approx. 30 epochs) using a batch size of 8096
rays (≈ 19 hours on a NVIDIA A100 GPU). We trained using backpropagation (Rumelhart et al.,
1986) and the adaptive moment estimation (Adam) optimizer (Kingma and Ba, 2015) with a learning
rate lr = 5× 10−4, and we used mean squared error (MSE) as the loss function. Model uncertainties
were estimated by fitting an ensemble of five SuNeRFs with different initializations and by computing
the standard deviation of the outputs.

As a baseline, we generated a synchronic map from simulation images which we then reprojected
to different viewpoints. Figure 3(a) shows the peak-signal-to-noise-ration (PSNR) and structural-
similarity (SSIM; Wang et al., 2004) for each viewpoint in the simulation. The distribution highlights
that SuNeRFs provide throughout high-quality results, with a minimum SSIM of 0.97. Points close
to the ecliptic show the smallest error, while the error gradually increases for higher latitudes, as
expected from the train-test split. Figure 3(b) compares our model to the baseline. At higher latitudes,
the simple reprojections show artifacts and larger deviations from the ground truth, while the SuNeRF
model renders almost identical images. Difference maps show that the primary errors occur close to
the solar limb and off-limb region, which is also reflected in the uncertainty maps. We note that the
reprojection method is incapable of handling the off-limb region.

Table 1 summarizes the quantitative evaluation over the full test set, with the SuNeRF model largely
outperforming the baseline and showing no signs of over- or under-estimation.

5 Conclusions

In this work, we adapted NeRFs to generate a physically-consistent representation of the 3D Sun,
with the inclusion of radiative transfer and geometric ray sampling that matches the physical reality
of optically thin plasma. We trained a SuNeRF model using a 3D simulation of the EUV corona, with
the training set limited to viewpoints that were captured from the ecliptic to reflect the limitations of
current space-based observations. The remaining (non-ecliptic) viewpoints were used to evaluate the
SuNeRF’s ability to reconstruct the full 3D geometry of the simulation. A comparison to a baseline
reprojection method shows that SuNeRFs provide new state-of-the-art results in 3D representations
of the full Sun.

Future work includes the expansion of SuNeRFs to other EUV wavelengths and to application to
actual EUV observations to generate novel views beyond what existing satellites can achieve. Finally,
we plan to expand SuNeRFs to output physical quantities such as plasma density and temperature
(from which we then compute emission and absorption).
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Short statement

In order to fully understand the physics that drives the dynamics of the Sun – including its eruptive
events and the resultant space weather in the solar system – we must observe the Sun as it is: an
evolving, three-dimensional star. To date, nearly all solar observations have been made along the
Sun-Earth line, with the crucial notable exception of the twin STEREO satellites (pulling ahead and
falling behind of Earth’s orbit) that proved how valuable other viewpoints are. The next natural step
in solar observations is to encircle the Sun with telescopes. The heliophysics community is calling for
such a constellation. However, there is an inherent tension between the cost of adding more satellites
to a constellation and the increased observational capability (science, forecasting) that results. The
methods described herein alleviate that tension by enabling the addition of virtual observatories
that can generate accurate synthetic images despite learning from a limited number of viewpoints
(provided those viewpoints are sufficiently dispersed around the Sun). Once the model has been
trained, there is no cost to adding virtual viewpoints at any position around the Sun. This not only
allows scientists to study dynamic phenomena from all angles, but these synthetic data can also be
used to determine how Sunlight is distributed across the crucial parts of the spectrum that drive upper
atmospheric chemistry or bombard the surface of planets with no atmosphere. This is unprecedented.
To date, only Earth and Mars have measurements of both the solar input and the planet’s atmospheric
response; while most planets have measurements of the latter, the tools developed here are needed to
provide the former. Ubiquitous coverage of the Sun means that better space weather forecasts can
be produced for Earth and anywhere else. This capability is critical to develop and test now so that
future crews en route to and at Mars can plan and act accordingly.
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